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research and industrial efficiency. 
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AI-Assisted Fermentation Digital Twin: This project creates a

digital twin that simulates and monitors fermentat ion in real

t ime, enabling researchers to opt imize bio-product ion by

predict ing outcomes, adjusting variables, and reducing tr ial-and-

error in scal ing bio-manufacturing processes.

Machine Learning for Iterative Metabolic Engineering:

Focused on enhancing microbial strain design, this project uses

machine learning to iterat ively improve genet ic engineering. It

accelerates development cycles, opt imizing microbial processes

that produce bio-materials for food, health, and industry.

Microbiome-Based Precision Feed: This project appl ies

machine learning to tai lor animal feed based on microbiome

data, support ing precision nutr it ion. By opt imizing feed for

specif ic microbiome prof i les, it aims to improve animal health

and promote sustainable agriculture.
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AI for Self-Driving Laboratories: This project develops ful ly

automated laboratories where AI algorithms autonomously run

and opt imize experiments. The self -organizing labs boost

experimental throughput, reproducibi l i ty, and accelerate

bioscience innovat ion by minimizing manual intervent ion.

Joery de Vries explores optimal experiment design in self -dr iving labs,

balancing explorat ion and exploitat ion. He uses Bayesian optimizat ion under

simpli f ied lab assumptions and reinforcement learning for broader, adaptable

strategies. A key study examines uncertainty management in black-box agents,

enhancing model robustness, explorat ion, and predict ive intervent ion [3] .
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microbiota-based solut ions in animal phenotypes. Using big data and holo-

mult i-omics, supervised ML predicts cow methane emissions and identif ies key

rumen microorganisms, informing future feed development. Stat ist ical and self -
supervised methods enhance precision nutr i t ion strategies.

Digital Twin and Smart Plant Scheduling: By integrat ing AI

models into plant schedul ing, this project enables smart

al locat ion of resources in biomanufacturing, improving eff iciency

in both schedul ing and product ion. It reduces downtime and

enhances f lexibi l i ty across the product ion pipel ine.

Kim van den Houten Kim van den Houten explores schedul ing algorithms for

biomanufactur ing under uncertainty. Her work addresses the chal lenge of

creating schedules that are both optimal and robust by invest igat ing if

determinist ic representat ions can simpli fy stochast ic models. Leveraging

decision-focused learning, she uses score funct ion gradient est imat ion to

develop pract ical, solvable schedul ing models [1] .
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Paul van Lent appl ies and develops supervised ML methods integrated with

automated recommendat ions for the Design-Build-Test-Learn (DBTL) cycle. He

uses a kinetic model-based simulation tool to compare ML algorithms for

metabol ic engineering. This simulation-guided approach opt imizes DBTL

parameters, enhancing microbial strain design [4].
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Mahdi Naderibeni integrates machine learning, f luid dynamics, and bio-

process model ing for faster predict ion, monitor ing, and opt imizat ion of

industr ial fermentat ion. Using CFD simulat ions and in situ measurements, he

employs physics- informed machine learning to enhance process eff iciency,

addressing the complexit ies of bio-product ion through advanced model ing

techniques [2].
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